Intel Power Supply ERP2U User Manual

SSI  
ERP2U  
(Entry Redundant Power 2U)  
Power Supply Design Guide  
A Server System Infrastructure (SSI) Specification  
For 2U Rack Chassis Power Supplies  
Version 1.0  
 
SSI  
ERP2U Power Supply Design Guide, V1.0  
Contents  
1
2
3
4
Purpose ..............................................................................................................................................5  
Conceptual Overview..........................................................................................................................5  
Definitions/Terms/Acronyms..............................................................................................................6  
Mechanical Overview..........................................................................................................................7  
4.1  
4.2  
Recommended Chassis Mounting Method ..........................................................................................8  
Airflow Requirements.........................................................................................................................8  
4.2.1  
Redundant Cooling .....................................................................................................................9  
4.3  
Temperature Requirements................................................................................................................9  
5
AC Input Requirements.......................................................................................................................9  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
AC Inlet Connector............................................................................................................................9  
Redundant AC Inlets..........................................................................................................................9  
AC Input Voltage Specification .........................................................................................................10  
Efficiency........................................................................................................................................10  
AC Line Dropout..............................................................................................................................11  
AC Line Fuse..................................................................................................................................11  
AC Inrush........................................................................................................................................11  
AC Line Transient Specification........................................................................................................12  
AC Line Fast Transient Specification ................................................................................................12  
6
DC Output Specification ...................................................................................................................13  
6.1  
Output Connectors ..........................................................................................................................13  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
Required Baseboard power connector .......................................................................................13  
Optional Processor Power Connector.........................................................................................13  
Required Peripheral Power Connectors......................................................................................14  
Required Floppy Power Connector ............................................................................................14  
Optional Server Signal Connector..............................................................................................15  
6.2  
6.3  
6.4  
Grounding.......................................................................................................................................15  
Remote Sense ................................................................................................................................15  
Output Power/Currents ....................................................................................................................16  
6.4.1  
Standby Outputs.......................................................................................................................17  
Voltage Regulation..........................................................................................................................17  
Dynamic Loading.............................................................................................................................18  
Capacitive Loading ..........................................................................................................................18  
Ripple / Noise..................................................................................................................................18  
Redundancy....................................................................................................................................19  
Hot Swap Requirements...............................................................................................................19  
Timing Requirements ...................................................................................................................21  
6.5  
6.6  
6.7  
6.8  
6.9  
6.10  
6.11  
7
8
Protection Circuits............................................................................................................................24  
7.1  
7.2  
7.3  
7.4  
Current Limit ...................................................................................................................................24  
240VA Protection ............................................................................................................................24  
Over Voltage Protection...................................................................................................................25  
Over Temperature Protection ...........................................................................................................25  
Control and Indicator Functions.......................................................................................................26  
8.1  
PSON# ...........................................................................................................................................26  
- 3 -  
 
SSI  
ERP2U Power Supply Design Guide, V1.0  
PWOK (Power OK)..........................................................................................................................27  
SMBus Communication....................................................................................................................28  
8.2  
8.3  
8.3.1  
8.3.2  
8.3.3  
8.4  
Field Replacement Unit (FRU) Signals .......................................................................................28  
Module FRU Data.....................................................................................................................28  
Module FRU Data Format .........................................................................................................28  
LED Indicators.................................................................................................................................30  
9
MTBF ................................................................................................................................................31  
10 Agency Requirements ......................................................................................................................31  
Figures  
Figure 1: Enclosure Drawing...........................................................................................................................7  
Figure 2: Output Voltage Timing ...................................................................................................................21  
Figure 3: Turn On/Off Timing ........................................................................................................................23  
Figure 4: PSON# Signal Characteristics........................................................................................................26  
Tables  
Table 1: Thermal Requirements......................................................................................................................9  
Table 2: AC Input Rating..............................................................................................................................10  
Table 3: Efficiency .......................................................................................................................................10  
Table 4: AC Line Sag Transient Performance................................................................................................12  
Table 5: AC Line Surge Transient Performance.............................................................................................12  
Table 6: P1 Baseboard Power Connector......................................................................................................13  
Table 7: Processor Power Connector ............................................................................................................13  
Table 8: Peripheral Power Connectors ..........................................................................................................14  
Table 9: P9 Floppy Power Connector ............................................................................................................14  
Table 10: Server Signal Connector................................................................................................................15  
Table 11: 350 W Load Ratings......................................................................................................................16  
Table 12: 480 W Load Ratings......................................................................................................................16  
Table 13: Voltage Regulation Limits..............................................................................................................17  
Table 14: Optional +5V Regulation Limits......................................................................................................17  
Table 15: Transient Load Requirements........................................................................................................18  
Table 16: Capacitve Loading Conditions........................................................................................................18  
Table 17: Ripple and Noise ..........................................................................................................................19  
Table 18: Output Voltage Timing...................................................................................................................21  
Table 19: Turn On/Off Timing .......................................................................................................................22  
Table 20: Over Current Protection.................................................................................................................24  
Table 21: Over Current Protection.................................................................................................................25  
Table 22: Over Voltage Limits.......................................................................................................................25  
Table 23: PSON# Signal Characteristic..........................................................................................................26  
Table 24: PWOK Signal Characteristics ........................................................................................................27  
Table 25: FRU Device Information ................................................................................................................28  
Table 26: FRU Device Product Information Area............................................................................................28  
Table 27: FRU Device Product Information Area............................................................................................29  
Table 28: LED Indicators ..............................................................................................................................30  
- 4 -  
 
SSI  
ERP2U Power Supply Design Guide, V1.0  
1 Purpose  
This 2U Rack Power Supply Design Guide defines a common redundant power sub-system used in 2U rack  
mount servers. The power sub-system is made up of a cage and hot swap redundant power modules. This  
Design Guide covers the mechanical and electrical requirements of this power sub-system. The requirements of  
the individual hot swap modules are left open. This power sub-system may range from 350 to 600 watts and is  
used in a hot swap redundant configuration. The scope of this document defines the requirements for this power  
assembly. The parameters of this supply are defined in this design guide for open industry use.  
2 Conceptual Overview  
In the Entry server market, the bulk power system must source power on several output rails.  
These rails are typically as follows:  
·
+3.3 V (optional from bulk supply)  
·
·
+5 V (optional from bulk supply)  
+12 V  
·
·
–12 V  
5 V standby  
NOTE  
Local DC-DC converters shall be utilized for processor power, and will ideally convert power from the +12 V  
rail, however, they may also convert power from other rails.  
The bulk power system may be a n+1 redundant power system or a non-redundant power system.  
- 5 -  
 
SSI  
ERP2U Power Supply Design Guide, V1.0  
3 Definitions/Terms/Acronyms  
Required  
The status given to items within this design guide, which are required to  
meet SSI guidelines and a large majority of system applications.  
Recommended  
Optional  
The status given to items within this design guide which are not required to  
meet SSI guidelines, however, are required by many system applications.  
The status given to items within this design guide, which are not required to  
meet SSI guidelines, however, some system applications may optionally  
use these features.  
Autoranging  
A power supply that automatically senses and adjusts itself to the proper  
input voltage range (110 VAC or 220 VAC). No manual switches or  
manual adjustments are needed.  
CFM  
Cubic Feet per Minute (airflow).  
Dropout  
A condition that allows the line voltage input to the power supply to drop to  
below the minimum operating voltage.  
Latch Off  
A power supply, after detecting a fault condition, shuts itself off. Even if the  
fault condition disappears, the supply does not restart unless manual or  
electronic intervention occurs. Manual intervention commonly includes  
briefly removing and then reconnecting the supply, or it could be done  
through a switch. Electronic intervention could be done by electronic  
signals in the Server System.  
Monotonically  
A waveform changes from one level to another in a steady fashion, without  
intermediate retracement or oscillation.  
Noise  
The periodic or random signals over frequency band of 0 Hz to 20 MHz.  
Overcurrent  
A condition in which a supply attempts to provide more output current than  
the amount for which it is rated. This commonly occurs if there is a "short  
circuit" condition in the load attached to the supply.  
PFC  
Power Factor Corrected.  
Ripple  
Rise Time  
The periodic or random signals over a frequency band of 0 Hz to 20 MHz.  
Rise time is defined as the time it takes any output voltage to rise from  
10% to 95% of its nominal voltage.  
Sag  
The condition where the AC line voltage drops below the nominal voltage  
conditions.  
Surge  
The condition where the AC line voltage rises above nominal voltage.  
VSB or Standby Voltage  
An output voltage that is present whenever AC power is applied to the AC  
inputs of the supply.  
MTBF  
Mean time between failure.  
PWOK  
A typical logic level output signal provided by the supply that signals the  
Server System that all DC output voltages are within their specified range.  
- 6 -  
 
SSI  
ERP2U Power Supply Design Guide, V1.0  
4 Mechanical Overview  
STATUS  
Required (Optional)  
Note: Some features are noted as optional in the enclosure drawing figure below. These features may be use in  
some chassis designs where only top access is allowed for the cage mounting.  
The ERP2U is a power sub-system made up of a cage and redundant, hot swappable power supply modules. A  
mechanical drawing of the cage is shown below in Figure 1. This cage is intended to be mounted in the system  
and not redundant or hot swappable. The exterior face of the cage accepts hot swappable power supply  
modules. The cage distributes output power from the modules to a wire harness. Cooling fans may be located in  
the modules or cage. If the cooling fans are located in the cage, they may optionally be redundant. If the cage  
has redundant cooling the cage depth may be extended to allow for the additional series fan. A recommended  
power supply module solution is the SSI TPS power supply. Refer to www.ssiforum.org for the latest TPS Design  
Guide. The cage may have IEC inlet connector(s) and EMI filtering to distribute AC power to the power supply  
modules or the AC may plug directly into the modules. Three different configurations of the power sub-system  
are also shown below in Figure 1.  
Optional mounting features for top access  
mounting of the power supply.  
Power Module  
Allow for 1.2mm  
Configuration Options  
protrusion (x4)  
SSI TPS Power Supply Configuration  
AC  
No Fans in modules  
AC inlets and EMI filter in cage  
AC  
Optional Dual AC Inlets  
Module Module  
AC  
Optional 3.3V, 5V DC/DC converters in cage  
Vertical Power Supply Configuration  
Fans in modules  
AC  
AC inlets on modules  
Dual AC Inlets  
Module  
AC  
Module  
Optional 3.3V, 5V DC/DC converters in cage  
Horizontal Power Supply Configuration  
Fans in modules  
Module  
Module  
AC inlets on modules  
Dual AC Inlets  
AC  
Optional 3.3V, 5V DC/DC converters in cage  
Figure 1: Enclosure Drawing  
- 7 -  
 
SSI  
ERP2U Power Supply Design Guide, V1.0  
4.1 Optional Chassis Mounting Features  
STATUS  
Optional  
The optional top access mounting method fastens to the system chassis via three mounting holes; two on the  
exterior face and one with the tab on the interior face of the cage. There are also four rectangular cutouts on the  
bottom of the cage. These are intended to drop over the top of rectangular features in the bottom of the chassis.  
This will help position the cage and secure it laterally. The features in the chassis are shown below as a  
reference.  
.
4.2 Airflow Requirements  
STATUS  
Recommended  
The power supply cooling, whether in the cage or the module, shall have a two-speed fan(s) and provide cooling  
to both the supply and the system. During low-speed fan operation, the power supply must not exceed a noise  
level of 43 dBa measured at one meter on all faces. At low fan speed, the power supply shall provide a minimum  
of 6 CFM. At high fan speed, the power supply shall provide a minimum of 9 CFM.  
- 8 -  
 
SSI  
ERP2U Power Supply Design Guide, V1.0  
4.2.1 Redundant Cooling  
STATUS  
Recommended  
It is recommended that the power supply cooling be redundant. This means the cooling device is located in the  
hot swap power supply modules or there are redundant devices located on the cage.  
4.3 Temperature Requirements  
STATUS  
Recommended  
The power supply shall operate within all specified limits over the Top temperature range. All airflow shall pass  
through the power supply and not over the exterior surfaces of the power supply.  
Table 1: Thermal Requirements  
ITEM  
DESCRIPTION  
MIN  
MAX  
UNITS  
Operating temperature range.  
0
50  
Top  
°C  
Non-operating temperature range.  
-40  
70  
Tnon-op  
°C  
The power supply must meet UL enclosure requirements for temperature rise limits. All sides of the power supply  
with exception to the air exhaust side, must be classified as “Handle, knobs, grips, etc. held for short periods of  
time only”.  
5 AC Input Requirements  
STATUS  
Required  
The power supply modules shall incorporate universal power input with active power factor correction, which shall  
reduce line harmonics in accordance with the EN61000-3-2 and JEIDA MITI standards.  
5.1 AC Inlet Connector  
STATUS  
Required  
The AC input connector shall be an IEC 320 C-14 power inlet. This inlet is rated for 15 A/250 VAC. This  
connector may be located on the module or on the cage.  
5.2 Redundant AC Inlets  
STATUS  
Recommended  
The power supply assembly may have dual redundant AC inlets. The power supply shall be able to operate over  
its full, specified range of requirements with either or both AC input powered. If there is a loss of one AC inlet the  
- 9 -  
 
SSI  
ERP2U Power Supply Design Guide, V1.0  
power supplies shall continue to operate with no interruption of performance. It is required that all redundant  
power supply modules be present to support redundant AC inlets.  
5.3 AC Input Voltage Specification  
STATUS  
Required  
The power supply must operate within all specified limits over the following input voltage range. Harmonic  
distortion of up to 10% THD must not cause the power supply to go out of specified limits. The power supply shall  
operate properly at 85 VAC input voltage to guarantee proper design margins.  
Table 2: AC Input Rating  
PARAMETER  
MIN  
RATED  
MAX  
350W Max 480W Max  
Rated Input Rated Input  
Current  
1
Voltage (110) 90 Vrms  
Voltage (220) 180 Vrms  
100-127  
Vrms  
140 Vrms  
264 Vrms  
63 Hz  
5.5 Arms  
1
1
200-240  
Vrms  
2.3 Arms  
3.5 Arms  
Frequency  
47 Hz  
1
Maximum rated input current is measured at 100 VAC and 200 VAC.  
5.4 Efficiency  
STATUS  
Required  
The power supply shall have a minimum efficiency shown in the table below for the different power ratings. The  
power dissipated within the sub-system shall be kept to less than 150W. The sub-system shall meet the minimum  
efficiency at 100VAC and maximum output load.  
Table 3: Efficiency  
Output  
Power  
Minimum  
Efficiency  
350W  
480W  
70%  
77%  
- 10 -  
 
SSI  
ERP2U Power Supply Design Guide, V1.0  
5.5 AC Line Dropout  
STATUS  
Required  
An AC line dropout is defined to be when the AC input drops to 0 VAC at any phase of the AC line for any length  
of time. During an AC dropout of one cycle or less the power supply must meet dynamic voltage regulation  
requirements over the rated load. An AC line dropout of one cycle or less shall not cause any tripping of control  
signals or protection circuits. If the AC dropout lasts longer than one cycle, the power supply should recover and  
meet all turn on requirements. The power supply must meet the AC dropout requirement over rated AC voltages,  
frequencies, and output loading conditions. Any dropout of the AC line shall not cause damage to the power  
supply. In the case of redundant AC inputs, the AC line dropout may occur on either or both AC inlet.  
5.6 AC Line Fuse  
STATUS  
Required  
The power supply shall incorporate one input fuse on the LINE side for input over-current protection to prevent  
damage to the power supply and meet product safety requirements. Fuses should be slow blow type or  
equivalent to prevent nuisance trips. AC inrush current shall not cause the AC line fuse to blow under any  
conditions. All protection circuits in the power supply shall not cause the AC fuse to blow unless a component in  
the power supply has failed. This includes DC output load short conditions.  
5.7 AC Inrush  
STATUS  
Required  
The power supply must meet inrush requirements for any rated AC voltage, during turn on at any phase of AC  
voltage, during a single cycle AC dropout condition, during repetitive ON/OFF cycling of AC, and over the  
specified temperature range (Top). The peak inrush current shall be less than the ratings of its critical components  
(including input fuse, bulk rectifiers, and surge limiting device).  
STATUS  
Recommended  
An additional inrush current limit is recommended for some system applications that require multiple systems on a  
single AC circuit. AC line inrush current shall not exceed 40 A peak. After one-quarter of the AC cycle, the input  
current should be no more than the specified maximum input current from Table 2.  
- 11 -  
 
SSI  
ERP2U Power Supply Design Guide, V1.0  
5.8 AC Line Transient Specification  
STATUS  
Recommended  
AC line transient conditions shall be defined as “sag” and “surge” conditions. Sag conditions (also referred to as  
“brownout” conditions) will be defined as the AC line voltage dropping below nominal voltage. Surge conditions  
will be defined as the AC line voltage rising above nominal voltage.  
The power supply shall meet the requirements under the following AC line sag and surge conditions.  
Table 4: AC Line Sag Transient Performance  
AC Line Sag  
Duration  
Sag  
Operating AC Voltage  
Line Frequency Performance Criteria  
Continuous  
10%  
Nominal AC Voltage ranges  
50/60 Hz  
50/60 Hz  
No loss of function or performance  
0 to 1 AC  
cycle  
100% Nominal AC Voltage ranges  
No loss of function or performance  
>1 AC cycle  
>10% Nominal AC Voltage ranges  
50/60 Hz  
Loss of function acceptable, self  
recoverable  
Table 5: AC Line Surge Transient Performance  
AC Line Surge  
Duration  
Surge Operating AC Voltage  
Line Frequency Performance Criteria  
Continuous  
10%  
30%  
Nominal AC Voltages  
50/60 Hz  
50/60 Hz  
No loss of function or performance  
No loss of function or performance  
0 to ½ AC  
cycle  
Mid-point of nominal AC  
Voltages  
5.9 AC Line Fast Transient Specification  
STATUS  
Recommended  
The power supply shall meet the EN61000-4-5 directive and any additional requirements in IEC1000-4-5:1995  
and the Level 3 requirements for surge-withstand capability, with the following conditions and exceptions:  
·
These input transients must not cause any out-of-regulation conditions, such as overshoot and  
undershoot, nor must it cause any nuisance trips of any of the power supply protection circuits.  
·
·
The surge-withstand test must not produce damage to the power supply.  
The supply must meet surge-withstand test conditions under maximum and minimum DC-output load  
conditions.  
- 12 -  
 
SSI  
ERP2U Power Supply Design Guide, V1.0  
6 DC Output Specification  
These are the output requirements for the power supply assembly including cage and module.  
6.1 Output Connectors  
The power supply assembly shall have the following output connectors and wire harness configuration.  
6.1.1 Required Baseboard power connector  
Connector housing: 24-Pin Molex 39-01-2240 or equivalent  
Contact: Molex 44476-1111 or equivalent  
Table 6: P1 Baseboard Power Connector  
Pin  
Signal  
18 AWG Color  
Pin  
Signal  
18 AWG Color  
1
+3.3 VDC  
Orange  
13  
+3.3 VDC  
Orange  
2
3
4
5
6
7
8
+3.3 VDC  
COM  
Orange  
Black  
Red  
14  
15  
16  
17  
18  
19  
20  
-12 VDC  
COM  
Blue  
Black  
Green  
Black  
Black  
Black  
N.C.  
+5 VDC  
COM  
PS_ON  
COM  
Black  
Red  
+5 VDC  
COM  
COM  
Black  
Gray  
COM  
PWR OK  
Reserved (-5 V in  
ATX)  
9
5 VSB  
Purple  
21  
22  
23  
24  
+5 VDC  
+5 VDC  
+5 VDC  
COM  
Red  
Red  
Red  
Black  
10  
11  
12  
+12 V2  
+12 V2  
+3.3 VDC  
Yellow/Blue Stripe  
Yellow/Blue Stripe  
Orange  
6.1.2 Optional Processor Power Connector  
This connector is needed for systems with dual processors at higher power levels.  
Connector housing: 8-Pin Molex 39-01-2080 or equivalent  
Contact: Molex 44476-1111 or equivalent  
Table 7: Processor Power Connector  
Pin  
Signal  
18 AWG color  
Pin  
Signal  
18 AWG Color  
1
COM  
Black  
5
+12 V1  
Yellow/Black Stripe  
2
3
4
COM  
COM  
COM  
Black  
Black  
Black  
6
7
8
+12 V1  
+12 V1  
+12 V1  
Yellow/Black Stripe  
Yellow/Black Stripe  
Yellow/Black Stripe  
- 13 -  
 
SSI  
ERP2U Power Supply Design Guide, V1.0  
6.1.3 Required Peripheral Power Connectors  
Connector housing: Amp 1-480424-0 or equivalent  
Contact: Amp 61314-1 contact or equivalent  
Table 8: Peripheral Power Connectors  
Pin Signal  
18 AWG Color  
1
2
3
4
+12V2 (or +12V3)  
Yellow  
COM  
Black  
Black  
Red  
COM  
+5 VDC  
Note: The +12V power to peripherals may be split between 2 or 3 channel for the purpose of  
limiting power to less than 240VA.  
6.1.4 Required Floppy Power Connector  
Connector housing: Amp 171822-4 or equivalent  
Table 9: P9 Floppy Power Connector  
Pin Signal  
22 AWG Color  
1
2
3
4
+5 VDC  
Red  
COM  
Black  
Black  
Yellow  
COM  
+12 V2 (or +12V3)  
Note: The +12V power to peripherals may be split between 2 or 3 channel for the purpose of  
limiting power to less than 240VA.  
- 14 -  
 
SSI  
ERP2U Power Supply Design Guide, V1.0  
6.1.5 Optional Server Signal Connector  
Connector housing: 5-pin Molex 50-57-9405 or equivalent  
Contacts: Molex 16-02-0088 or equivalent (gold plated)  
Notes:  
It is recommended to use gold plated signal contacts on both the power supply connector and the baseboard  
header.  
If the optional server signal connector is not used on the power supply the 3.3VRS and ReturnS lines shall be  
crimped into the contacts in the baseboard power connector.  
If the server signal connector is unplugged, the power supply shall not shutdown or go into an over voltage  
condition.  
Table 10: Server Signal Connector  
Pin  
Signal  
I2C Clock  
24 AWG Color  
White/Green Stripe  
1
2
3
4
5
I2C Data  
Reserved  
ReturnS  
3.3RS  
White/Yellow Stripe  
NA  
Black/White Stripe  
Orange/White Stripe  
6.2 Grounding  
STATUS  
Required  
The ground of the pins of the power assembly wire harness provides the power return path. The wire harness  
ground pins shall be connected to safety ground (power supply enclosure).  
6.3 Remote Sense  
STATUS  
Optional  
The power assembly may have remote sense for the +3.3V (3.3VS) and return (ReturnS) if the Optional Server  
Signal connector is implemented and the module has a +3.3V output. The remote sense return (ReturnS) is used  
to regulate out ground drops for all output voltages. The +3.3V remote sense (3.3VS) is used to regulate out  
drops in the system for the +3.3 V output. The remote sense input impedance to the power sub-assembly must  
be greater than 200 ohms on 3.3 VS and ReturnS. This is the value of the resistor connecting the remote sense  
to the output voltage internal to the power assembly. Remote sense must be able to regulate out a minimum of  
200 mV drop on the +3.3 V output. The remote sense return (ReturnS) must be able to regulate out a minimum of  
200 mV drop in the power ground return. The current in any remote sense line shall be less than 5 mA to prevent  
voltage sensing errors. The power supply must operate within specification over the full range of voltage drops  
from the power assembly’s output connector to the remote sense points.  
- 15 -  
 
SSI  
ERP2U Power Supply Design Guide, V1.0  
6.4 Output Power/Currents  
STATUS  
Recommended  
The following tables define the power and current ratings for two recommend power levels. Depending upon the  
system design, the power supply modules may have only three outputs (+12V, -12V, and 5VSB) or the full five  
outputs (+3.3V, +5V, +12V, -12V, and 5VSB). If only three outputs are provided from the module, the cage shall  
have additional DC/DC converters to generate +5V and +3.3V from the +12V provided by the modules. The  
combined output power of all outputs from the cage shall not exceed the rated output power. The power  
assembly shall meet both static and dynamic voltage regulation requirements over the full load ranges. The  
power sub-assembly shall supply redundant power over the full load ranges.  
Table 11: 350 W Load Ratings  
Voltage  
Minimum Continuous  
0.5 A  
Maximum Continuous  
20 A  
Peak  
+3.3 V 7  
+5 V 7  
2.0 A  
0.5 A  
1.0 A  
0 A  
20 A  
12 A  
13 A  
0.5 A  
2.0 A  
+12V2 (baseboard connector)  
15 A  
15A  
+12V3 (peripheral connectors)  
-12 V  
+5 VSB  
0.1 A  
1
2
3
4
5
6
7
Maximum continuous total DC output power should not exceed 350 W.  
Maximum continuous combined load on +3.3 VDC and +5 VDC outputs shall not exceed 115 W.  
Maximum Peak total DC output power should not exceed 410 W.  
Peak power and current loading shall be supported for a minimum of 10 second.  
Maximum combined current for the 12 V outputs shall be 25 A.  
Maximum 12V combined peak current shall be 30A.  
The 3.3V and 5V may be supply by the module or DC/DC converters powered from +12V in the cage.  
Table 12: 480 W Load Ratings  
Voltage  
Minimum Continuous  
0.5 A  
Maximum Continuous  
20 A  
Peak  
+3.3 V 7  
+5 V 7  
2.0 A  
0.5 A  
1.0 A  
0.5 A  
0 A  
20 A  
15 A  
12 A  
10 A  
0.5 A  
2.0 A  
+12V1 (processor connector)  
+12V2 (baseboard connector)  
+12V3 (peripheral connectors)  
-12 V  
18 A  
16 A  
+5 VSB  
0.1 A  
1. Maximum continuous total DC output power should not exceed 480 W.  
2. Maximum continuous combined load on +3.3 VDC and +5 VDC outputs shall not exceed 115 W.  
3. Maximum Peak total DC output power should not exceed 620 W.  
4. Peak power and current loading shall be supported for a minimum of 10 second.  
5. Maximum combined current for the 12 V outputs shall be 37 A.  
6. Maximum 12V combined peak current shall be 46 A.  
7. The 3.3V and 5V may be supply by the module or DC/DC converters powered from +12V in the cage.  
- 16 -  
 
SSI  
ERP2U Power Supply Design Guide, V1.0  
6.4.1 Standby Outputs  
STATUS  
Required  
The 5 VSB output shall be present when an AC input greater than the power supply turn on voltage is applied.  
6.5 Voltage Regulation  
STATUS  
Required  
The power assembly output voltages must stay within the following voltage limits when operating at steady state  
and dynamic loading conditions. These limits include the peak-peak ripple/noise specified in Section 5.9. All  
outputs are measured with reference to the return remote sense (ReturnS) signal. The 5 V, 12V1, 12V2, 12V3, –  
12 V and 5 VSB outputs are measured at the power assembly connectors referenced to ReturnS. The +3.3 V is  
measured at its remote sense signal (3.3VS) located at the signal connector.  
Table 13: Voltage Regulation Limits  
Parameter  
MIN  
NOM  
MAX  
Units  
Tolerance  
+3.3 V (optional)  
+3.20  
+3.30  
+3.46  
V
rms  
+5/-3%  
+5 V (optional)  
+12V1  
+4.80  
+5.00  
+5.25  
V
+5/-4%  
+5/-4%  
+5/-4%  
+5/-4%  
+9/-5%  
+5/-3%  
rms  
+11.52  
+11.52  
+11.52  
-11.40  
+4.85  
+12.00  
+12.00  
+12.00  
-12.20  
+5.00  
+12.60  
+12.60  
+12.60  
-13.08  
+5.25  
V
rms  
+12V2  
V
rms  
+12V3 (optional)  
-12 V  
V
rms  
V
rms  
+5 VSB  
V
rms  
STATUS  
Optional  
Some system applications may require tighter regulation limits on the +5 V output. The optional regulation limits  
are shown below.  
Table 14: Optional +5V Regulation Limits  
Parameter  
MIN  
NOM  
MAX  
Units  
Tolerance  
+5 V  
+4.85  
+5.00  
+5.25  
V
rms  
+5/-3%  
- 17 -  
 
SSI  
ERP2U Power Supply Design Guide, V1.0  
6.6 Dynamic Loading  
STATUS  
Required  
The output voltages shall remain within the limits specified in Table 13 for the step loading and within the limits  
specified in Table 15 for the capacitive loading. The load transient repetition rate shall be tested between 50 Hz  
and 5 kHz at duty cycles ranging from 10%-90%. The load transient repetition rate is only a test specification.  
The D step load may occur anywhere within the MIN load to the MAX load shown in Table 11.  
Table 15: Transient Load Requirements  
Output  
D Step Load Size Load Slew  
Capacitive Load  
Rate  
+3.3 V  
30% of max load  
30% of max load  
65% of max load  
25% of max load  
0.5 A/ms  
0.5 A/ms  
0.5 A/ms  
0.5 A/ms  
1,000 mF  
1,000 mF  
1,000 mF  
1 mF  
+5 V  
12V1+12V2+(12V3)  
+5 VSB  
6.7 Capacitive Loading  
STATUS  
Required  
The power supply shall be stable and meet all requirements, except dynamic loading requirements, with the  
following capacitive loading ranges.  
Note: Up to 10,000 mF of the +12V capacitive loading may be on the +12V1 output.  
Table 16: Capacitve Loading Conditions  
Output  
MIN  
MAX  
Units  
+3.3 V  
10  
12,000  
mF  
+5 V  
10  
10  
1
12,000  
11,000  
350  
mF  
mF  
mF  
mF  
+12 V  
-12 V  
+5 VSB  
1
350  
6.8 Ripple / Noise  
STATUS  
Required  
The maximum allowed ripple/noise output of the power supply is defined in Table 17. This is measured over a  
bandwidth of 0 Hz to 20 MHz at the power supply output connectors. A 10 mF tantalum capacitor in parallel with a  
0.1 mF ceramic capacitor are placed at the point of measurement.  
- 18 -  
 
SSI  
ERP2U Power Supply Design Guide, V1.0  
Table 17: Ripple and Noise  
+3.3 V  
+5 V  
+12 V  
-12 V  
+5 VSB  
50 mVp-p  
50 mVp-p  
120 mVp-p  
120 mVp-p  
50 mVp-p  
6.9 Redundancy  
The power sub-system may have different levels of redundancy depending upon the availability requirements of  
the system. The Required, Recommended, and Optional items are broken down here. To be redundant each  
item must be in the hot swap power supply module.  
STATUS  
Required  
The power sub-system shall have redundancy of the main power converters for the power factor correction stage  
and the main +12V output.  
STATUS  
Recommended  
It is recommended the power sub-system have redundancy for the following items, however, depending upon the  
system availability requirements, these items may be non-redundant.  
It is recommended to have redundancy for the output or’ing devices, fans, AC bridge, output capacitors, -12V  
converter, and 5VSB converter.  
STATUS  
Optional  
It is optional to have redundancy for the AC EMI filter components, 3.3V output converter, and 5V output  
converter.  
6.10 Hot Swap Requirements  
STATUS  
Required  
The power supply modules shall be hot swappable. Hot swapping a power supply is the process of inserting and  
extracting a power supply from an operating power system. During this process the output voltages shall remain  
within the limits specified in Table 13 with the capacitive load specified Table 16. The hot swap test must be  
conducted when the sub-system is operating under both static and dynamic conditions. The sub-system shall not  
exceed the maximum inrush current as specified in section 5.7. The power supply can be hot swapped by the  
following methods:  
·
AC connecting separately to each module. Up to two power supplies may be on a single AC power source.  
Extraction: The AC power will be disconnected from the power supply first and then the power supply is  
extracted from the sub-system. This could occur in standby mode or powered on mode. Insertion: The  
module is inserted into the cage and then AC power will be connected to the power supply module.  
·
For power modules with AC docking at the same time as DC. Extraction: The module is extracted from the  
cage and both AC and DC disconnect at the same time. This could occur in standby or power on mode. No  
damage or arcing shall occur to the DC or AC contacts which could cause damage. Insertion: The AC and  
- 19 -  
 
SSI  
ERP2U Power Supply Design Guide, V1.0  
DC connect at the same time as the module is inserted into the cage. No damage to the connector contacts  
shall occur. The module may power on or come up into standby mode.  
Many variations of the above are possible. Supplies need to be compatible with these different variations  
depending upon the sub-system construction. In general, a failed (off by internal latch or external control) supply  
may be removed, then replaced with a good power supply, however, hot swap needs to work with operational as  
well as failed power supplies. The newly inserted power supply may get turned on by inserting the supply into the  
system or by system management recognizing an inserted supply and explicitly turning it on.  
- 20 -  
 
SSI  
ERP2U Power Supply Design Guide, V1.0  
6.11 Timing Requirements  
STATUS  
Required  
These are the timing requirements for the power assembly operation. The output voltages must rise from 10% to  
within regulation limits (Tvout_rise) within 5 to 200ms. The +3.3 V, +5 V and +12 V output voltages should start to  
rise at about the same time. All outputs must rise monotonically. The +5 V output needs to be greater than the  
+3.3 V output during any point of the voltage rise. The +5V output must never be greater than the +3.3V output  
by more than 2.25 V. Each output voltage shall reach regulation within 50 ms (Tvout_on) of each other during turn  
on of the power supply. Each output voltage shall fall out of regulation within 400 ms (Tvout_off) of each other  
during turn off. Figure 2 and Figure 3 show the turn ON and turn OFF timing requirements. In Figure 3, the  
timing is shown with both AC and PSON# controlling the ON/OFF of the power supply.  
Table 18: Output Voltage Timing  
Item  
Description  
MIN  
MAX  
Units  
Tvout_rise  
Output voltage rise time from each main output.  
5
200  
ms  
Tvout_on  
All main outputs must be within regulation of each  
other within this time.  
50  
ms  
Tvout_off  
All main outputs must leave regulation within this  
time.  
400  
ms  
Vout  
10% Vout  
V1  
V2  
V3  
V4  
Tvout_rise  
Tvout_on  
Tvout_off  
Figure 2: Output Voltage Timing  
- 21 -  
 
SSI  
ERP2U Power Supply Design Guide, V1.0  
Table 19: Turn On/Off Timing  
Item  
Description  
MIN  
MAX  
UNITS  
Tsb_on_delay  
Delay from AC being applied to 5 VSB being  
within regulation.  
1500  
ms  
T ac_on_delay  
Tvout_holdup  
Delay from AC being applied to all output voltages  
being within regulation.  
2500  
ms  
ms  
Time all output voltages stay within regulation  
after loss of AC.  
18  
Tpwok_holdup  
Delay from loss of AC to deassertion of PWOK.  
Delay from PSON# active to output voltages within  
regulation limits.  
Delay from PSON# deactive to PWOK being  
deasserted.  
17  
5
ms  
ms  
Tpson_on_delay  
400  
50  
T pson_pwok  
Tpwok_on  
ms  
ms  
ms  
Delay from output voltages within regulation limits 200  
to PWOK asserted at turn on.  
1000  
T pwok_off  
Delay from PWOK deasserted to output voltages  
(3.3 V, 5 V, 12 V, -12 V) dropping out of regulation  
limits.  
1
Tpwok_low  
Duration of PWOK being in the deasserted state  
during an off/on cycle using AC or the PSON#  
signal.  
100  
50  
ms  
ms  
Tsb_vout  
Delay from 5 VSB being in regulation to O/Ps  
being in regulation at AC turn on.  
1000  
STATUS  
Recommended  
Item  
Description  
MIN  
MAX  
UNITS  
Tvout_holdup  
Time all output voltages stay within regulation  
after loss of AC.  
21  
ms  
Tpwok_holdup  
Tsb_holdup  
Delay from loss of AC to deassertion of PWOK.  
20  
ms  
ms  
Time 5VSB output voltage stays within regulation 70  
after loss of AC.  
- 22 -  
 
SSI  
ERP2U Power Supply Design Guide, V1.0  
AC Input  
Tvout_holdup  
Vout  
TAC_on_delay  
Tpwok_low  
Tpwok_off  
Tpwok_on  
Tpwok_off  
Tsb_on_delay  
Tsb_on_delay  
Tpwok_on  
Tpwok_holdup  
Tpson_pwok  
PWOK  
Tsb_holdup  
5VSB  
Tsb_vout  
Tpson_on_delay  
PSON#  
AC turn on/off cycle  
PSON turn on/off cycle  
Figure 3: Turn On/Off Timing  
- 23 -  
 
SSI  
ERP2U Power Supply Design Guide, V1.0  
7 Protection Circuits  
STATUS  
Required  
Protection circuits inside the power supply shall cause only the power supply’s main outputs to shutdown. If the  
power supply latches off due to a protection circuit tripping, an AC cycle OFF for 15 s and a PSON# cycle HIGH  
for 1 s must be able to reset the power supply.  
7.1 Current Limit  
STATUS  
Required  
The power supply shall have current limit to prevent the +3.3 V, +5 V, and +12 V outputs from exceeding the  
values shown in Table 20. If the current limits are exceeded, the power supply shall shutdown and latch off. The  
latch will be cleared by toggling the PSON# signal or by an AC power interruption. The power supply shall not be  
damaged from repeated power cycling in this condition. -12 V and 5 VSB shall be protected under over current or  
shorted conditions so that no damage can occur to the power supply.  
Table 20: Over Current Protection  
Voltage  
+3.3 V  
+5 V  
+12V (combined) Peak combine current minimum; 150% maximum  
Over Current Limit (Iout limit)  
110% minimum; 150% maximum  
110% minimum; 150% maximum  
7.2 240VA Protection  
STATUS  
Recommended  
System designs may require user access to energized areas of the system. In these cases the power supply may  
be required to meet regulatory 240VA energy limits for any power rail. Since the +12V rail combined power  
exceeds 240VA it must be divided into separate channels to meet this requirement. Each separate rail needs to  
be limited to less than 20A for each +12V rail. The separate +12V rails do not necessarily need to be  
independently regulated outputs. They can share a common power conversion stage. The +12V rail is divided  
into two rails for the 350W power level and three rails for the 480W power level. See section 6.4 for how the  
+12V rail is split between different output connectors.  
- 24 -  
 
SSI  
ERP2U Power Supply Design Guide, V1.0  
Table 21: Over Current Protection  
Voltage  
+3.3 V  
Over Current Limit (Iout limit)  
110% minimum; 150% maximum  
+5 V  
110% minimum; 150% maximum  
+12V1,2,3  
Peak current minimum; 20A maximum  
7.3 Over Voltage Protection  
STATUS  
Required  
The power supply over voltage protection shall be locally sensed in the hot swap modules. The power supply  
shall shutdown and latch off after an over voltage condition occurs. This latch shall be cleared by toggling the  
PSON# signal or by an AC power interruption. Table 22 contains the over voltage limits. The values are  
measured at the output of the power supply’s connectors. The voltage shall never exceed the maximum levels  
when measured at the power pins of the power supply connector during any single point of fail. The voltage shall  
never trip any lower than the minimum levels when measured at the power pins of the power supply connector.  
Table 22: Over Voltage Limits  
Output Voltage  
+3.3 V  
MIN (V)  
MAX (V)  
3.9  
4.5  
+5 V  
5.7  
13.3  
-13.3  
5.7  
6.5  
14.5  
-14.5  
6.5  
+12V1,+12V2, +12V3  
-12 V  
+5 VSB  
7.4 Over Temperature Protection  
STATUS  
Recommended  
The power supply will be protected against over temperature conditions caused by loss of fan cooling or  
excessive ambient temperature. In an OTP condition the PSU will shutdown. When the power supply  
temperature drops to within specified limits, the power supply shall restore power automatically. The OTP circuit  
must have built in hysteresis such that the power supply will not oscillate on and off due to temperature recovering  
condition. The OTP trip level shall have a minimum of 4 °C of ambient temperature hysteresis.  
- 25 -  
 
SSI  
ERP2U Power Supply Design Guide, V1.0  
8 Control and Indicator Functions  
The following sections define the input and output signals from the power supply.  
Signals that can be defined as low true use the following convention:  
signal# = low true  
8.1 PSON#  
STATUS  
Required  
The PSON# signal is required to remotely turn on/off the power supply. PSON# is an active low signal that turns  
on the +3.3 V, +5 V, +12 V, and -12 V power rails. When this signal is not pulled low by the system, or left open,  
the outputs (except the +5 VSB and Vbias) turn off. This signal is pulled to a standby voltage by a pull-up resistor  
internal to the power supply. Refer to Figure 3 for timing diagram.  
Table 23: PSON# Signal Characteristic  
Accepts an open collector/drain input from the system.  
Pull-up to VSB located in power supply.  
Signal Type  
ON  
PSON# = Low  
OFF  
PSON# = Open or High  
MIN  
MAX  
0 V  
1.0 V  
Logic level low (power supply ON)  
Logic level high (power supply OFF)  
Source current, Vpson = low  
2.0 V  
5.25 V  
4 mA  
5 ms  
400 ms  
50 ms  
Power up delay:  
PWOK delay:  
Tpson_on_delay  
T pson_pwok  
Hysteresis ³ 0.3V and/or other de-bounce method  
Disabled  
£ 1.0 V  
PS is  
³ 2.0 V  
PS is  
enabled  
disabled  
Enabled  
0V  
1.0V  
2.0V  
5.25V  
Figure 4: PSON# Signal Characteristics  
- 26 -  
 
SSI  
ERP2U Power Supply Design Guide, V1.0  
8.2 PWOK (Power OK)  
STATUS  
Required  
PWOK is a power OK signal and will be pulled HIGH by the power supply to indicate that all the outputs are within  
the regulation limits of the power supply. When any output voltage falls below regulation limits or when AC power  
has been removed for a time sufficiently long so that power supply operation is no longer guaranteed, PWOK will  
be deasserted to a LOW state. See Figure 3 for a representation of the timing characteristics of PWOK. The  
start of the PWOK delay time shall be inhibited as long as any power supply output is in current limit.  
Table 24: PWOK Signal Characteristics  
Open collector/drain output from power supply. Pull-up  
to VSB located in power supply.  
Signal Type  
Power OK  
PWOK = High  
Power Not OK  
PWOK = Low  
MIN  
MAX  
0 V  
0.4 V  
Logic level low voltage, Isink = 4 mA  
Logic level high voltage, Isource=200 mA  
Sink current, PWOK = low  
2.4 V  
5.25 V  
4 mA  
2 mA  
Source current, PWOK = high  
PWOK delay: Tpwok_on  
200 ms  
1 ms  
1000 ms  
100 ms  
PWOK rise and fall time  
200 ms  
Power down delay: T pwok_off  
- 27 -  
 
SSI  
ERP2U Power Supply Design Guide, V1.0  
8.3 SMBus Communication  
STATUS  
Optional  
There may be SMBus communication to the power assembly to monitor the cage and modules. This would  
require a serial EEPROM to store FRU data of each module and communicate the information onto the SMBus.  
There may also be a device in the cage to monitor the module failure and presence status via the SMBus. If there  
is a fan in the cage, the SMBus device in the cage may also monitor the fan(s) for failure.  
8.3.1 Field Replacement Unit (FRU) Signals  
STATUS  
Optional  
Two pins will be allocated for the FRU information on the power supply connector. One pin is the Serial Clock  
(SCL). The second pin is used for Serial Data (SDA). Both pins are bi-directional and are used to form a serial  
bus. The FRU circuits inside the power supply must be powered off of 5 VSB output and grounded to ReturnS  
(remote sense return). The Write Control (or Write protect) pin should be tied to ReturnS inside the power supply  
so that information can be written to the EEPROM.  
8.3.2 Module FRU Data  
FRU data shall be stored starting in address location 8000h through 80FFh. The FRU data format shall be  
compliant with the IPMI specifications. The current version of these specifications are available at:  
http:\\developer.intel.com/design/servers/ipmi/spec.htm.  
8.3.3 Module FRU Data Format  
The information to be contained in the FRU device is shown in the following table.  
Table 25: FRU Device Information  
Area Type  
Description  
Common Header  
As defined by the FRU document  
Internal Use Area  
Chassis Info Area  
Board Info Area  
Not required, do not reserve  
Not applicable, do not reserve  
Not applicable, do not reserve  
8.3.3.1 Product Info Area  
As defined by the IPMI FRU document. Product information shall be defined as follows:  
Table 26: FRU Device Product Information Area  
Field Name  
Field Description  
Manufacturer Name  
{Formal name of manufacturer}  
Product Name  
{Manufacturer’s model number}  
Customer part number  
Product part/model number  
Product Version  
Customer current revision  
{Defined at time of manufacture}  
Product Serial Number  
- 28 -  
 
SSI  
ERP2U Power Supply Design Guide, V1.0  
Asset Tag  
FRU File ID  
PAD Bytes  
{Not used, code is zero length byte}  
{Not required}  
{Added as necessary to allow for 8-byte offset to next area}  
8.3.3.2 MultiRecord Area  
As defined by the IPMI FRU document. The following record types shall be used on this power supply:  
·
·
·
Power Supply Information (Record Type 0x00)  
DC Output (Record Type 0x01)  
No other record types are required for the power supply.  
MultiRecord information shall be defined as follows:  
Table 27: FRU Device Product Information Area  
Field Name (PS Info)  
Field Information Definition  
Overall Capacity (watts)  
480  
Peak VA  
550  
50  
5
Inrush current (A)  
Inrush interval (ms)  
Low end input voltage range 1 90  
High end input voltage range 1 140  
Low end input voltage range 2 180  
High end input voltage range 2 264  
A/C dropout tol. (ms)  
Binary flags  
20  
Set for: Hot Swap support, Autoswitch, and PFC  
Peak Wattage  
Set for: 10 s, 550 W  
Combined wattage  
Set for 5 V & 3.3V combined wattage of 115 W  
Not supported, 00h value  
Predictive fail tach support  
Field Name (Output)  
Field Description:  
Five outputs are to be defined from #1 to #5, as follows: +3.3 V, +5  
V, +12 V, -12V, and +5 VSB.  
Output Information  
Set for: Standby on +5 VSB, No Standby on all others.  
All other output fields  
Format per IPMI specification, using parameters in the EPS12V  
specification.  
- 29 -  
 
SSI  
ERP2U Power Supply Design Guide, V1.0  
STATUS  
8.4 LED Indicators  
Required  
There shall be a single bi-color LED OR two LEDs, one AMBER and one GREEN, on each hot swap power  
module to indicate power supply status. When AC is applied to the power supply and standby voltages are  
available the GREEN LED shall BLINK. The GREEN LED shall turn ON to indicate that all the power outputs are  
available. The AMBER LED shall turn ON to indicate that the power supply has failed, shutdown due to over  
current, or shutdown due to over temperature. Refer to Table 28: LED Indicators for conditions of the LED(s).  
Table 28: LED Indicators  
POWER SUPPLY CONDITION  
Power Supply LED(s)  
AMBER  
OFF  
GREEN  
OFF  
No AC power to all PSU  
No AC power to this PSU only  
AC present / Only Standby Outputs On  
Power supply DC outputs ON and OK  
AMBER  
OFF  
OFF  
BLINK  
ON  
OFF  
Power supply failure (includes over  
voltage, over temperature)  
ON  
OFF  
Current limit  
ON  
OFF  
The LED(s) shall be visible on the power supply’s exterior face. The LED location shall meet ESD requirements.  
LED shall be securely mounted in such a way that incidental pressure on the LED shall not cause it to become  
displaced.  
- 30 -  
 
SSI  
ERP2U Power Supply Design Guide, V1.0  
9 MTBF  
STATUS  
Recommended  
The power module shall have a minimum MTBF at continuous operation of 1) 50,000 hours at 100% load and  
45 °C, as calculated by Bellcore RPP, or 2) 100,000 hours demonstrated at 100% load and 50 °C.  
The power cage shall have a minimum MTBF at continuous operation of 1) 200,000 hours at 100% load and  
45 °C, as calculated by Bellcore RPP, or 2) 400,000 hours demonstrated at 100% load and 50 °C  
10Agency Requirements  
STATUS  
Recommended  
The power supply must comply with all regulatory requirements for its intended geographical market. Depending  
on the chosen market, regulatory requirements may vary. Although a power supply can be designed for  
worldwide compliance, there may be cost factors that drive different versions of supplies for different  
geographically targeted markets.  
This specification requires that the power supply meet all regulatory requirements for the intended market at the  
time of manufacturing. Typically this includes:  
·
·
·
·
·
·
·
UL  
CSA  
A Nordic CENELEC  
TUV  
VDE  
CISPR Class B  
FCC Class B  
The power supply, when installed in the system, shall meet immunity requirements specified in EN55024.  
Specific tests are to be EN61000-4-2 ,-3, -4, -5, -6, -8, -11, EN61000-3-2, -3, and JEIDI MITI standard. The  
power supply must maintain normal performance within specified limits. This testing must be completed by the  
system EMI engineer. Conformance must be designated with the European Union CE Marking. Specific  
immunity level requirements are left to customer requirements.  
- 31 -  
 

Intel Computer Hardware PCI 6886 User Manual
Intel Laptop microcomputer development system hardware User Manual
JAMO Automobile Alarm PRO 9644A User Manual
Jensen MP3 Docking Station JiSS 585 User Manual
JVC Speaker System CA MXKA3 User Manual
Kambrook Vacuum Cleaner KBV70 User Manual
Kenmore Water System 420 Series User Manual
KitchenAid Microwave Oven KCMS1555 User Manual
Kodak Digital Camera M381 User Manual
Konica Minolta Digital Camera S414 User Manual